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Abstract

A crack that undergoes partial frictional sliding under compression and shear is analyzed. The frictional resistance is
assumed to be non-uniform along the sliding contact. This non-uniformity may be due to variability of the coefficient of
friction or due to variability of the normal traction along the crack (that may be caused by some external factors).
Sliding, generally, starts at point(s) of low frictional resistance and may propagate along the crack as the applied loads
are changed. This process and its sensitivity to the profile of the frictional resistance are analyzed. We also analyze the
case when “open” (traction free) intervals along the crack are present; such intervals model the situations when a part of
the material “fell off” and contact between the crack faces is partially lost. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The problem of frictionally sliding cracks is relevant for a number of applications, particularly geo-
mechanical ones, where the stress conditions are predominantly compressive, with substantially different
principal stresses. If shear tractions are sufficiently high, they may overcome the frictional resistance and
initiate sliding. If the frictional resistance is uniform along the sliding contact, then sliding occurs at all
points of the surface simultaneously. However, this assumption may be inadequate for many applications,
like sliding processes along geological faults (Pollard, 1980; Cooke, 1997; Schultz, 1999).

The present work analyzes initiation and propagation of sliding zones on one or several collinear two-
dimensional cracks under increasing applied shear load. Frictional resistance is assumed to be non-uniform
along the frictional contact. This non-uniformity may be due to variability of the coefficient of friction
(local lubrications or a loss of lubricant) or due to variability of the normal traction along the crack (caused
by some external factors, for example, local fluid pressures). We also analyze the distribution of dis-
placement discontinuity (the accumulated slip) along the crack.
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The crack may experience three different regimes along its surface: intervals undergoing frictional sliding,
“open” (traction free) intervals and “locked” intervals. Open intervals model the situations when a part of
the material “fell off”” and contact between the crack faces is partially lost. They are taken as fixed intervals
that are not caused by any loads. We mention, in this connection, a somewhat different problem analyzed
by Mendelsohn and Whang (1988) and Dundurs and Comninou (1979, 1981): the sliding line contained an
opening due to application of local “prying” forces or moments. The locked intervals differ from the virgin
continuous material by the requirement that stress intensity factors at their endpoints are zeros.

Sliding starts at point(s) of minimal frictional resistance and then propagates, as the applied shear load is
increased, until it covers the entire crack length. The propagation of sliding is determined by the condition
for the stress intensity factor: Kj; = 0 at the ends of the sliding interval(s). This condition allows one to find
locations of the endpoints of the sliding zone(s) as functions of applied loads. We study the evolution of
such zones under changing loads, sensitivity of the process to various physical factors (the shape of local
maxima/minima of the frictional resistance, the case when the sliding zone reaches one of the crack tips),
the enhancing effect of interaction between several sliding zones and the influence of the open intervals on
the sliding process.

In two special cases, when the frictional resistance profile has one local minimum, either in the form of
stepwise constant discontinuity or in the form of a triangle, the problem was analyzed by Weertman (1964)
and Olsson (1984), correspondingly. We also mention the work of Comninou and Dundurs (1983) where
the propagation of sliding from a local minimum of frictional resistance was considered, in a more general
case of sliding along the interface of two different materials. Their analysis, however, was restricted to the
case of only one local minimum of the frictional resistance, with actual results given for the parabolic shape
of the minimum. The present analysis applies to the frictional resistance profile of a general shape that may
have several extremums; it covers the above mentioned situations as special cases.

2. Formulation of the problem

We consider an infinite two-dimensional solid with a crack (—/, /) along the x-axis. Stresses at infinity
(applied loads) are g < 0 (compressive) and o) > 0. The frictional resistance is assumed to be variable
along the crack: 7 = 7(x). We emphasize that, although the frictional resistance may, as a special case, be
modeled by Coulomb’s law 7(x) = —u(x) g, + ¢(x) (where p(x) and c(x) are the coefficients of friction and
cohesion, respectively), such a modeling is not essential for the present analysis. The sliding process may
start at points of local minima of 7(x) and then propagate along the crack, as applied loads are changed.
This process is studied in the present work.

As mentioned above, the crack may experience three different regimes along its surface: intervals un-
dergoing frictional sliding, locked intervals and open (traction free) intervals (schematically shown in Fig.
1). These regimes are defined by the following boundary conditions (brackets [ | denote discontinuities of
the corresponding quantities):

(1) Along the set L, of frictionally sliding intervals

low| =1(x), [w] =0, [o4]=][0,]=0 forxel (2.1a)
subject to the inequality
g, <0 forxelL (2.1b)
(2) Along the set L, of locked intervals
] =[] =0, [04]=][0,]=0 forxelL (2.2a)

subject to the inequalities
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Fig. 1. Crack line consisting of a sliding interval L;, a locked interval L, and an open interval L; (each of the intervals may comprise of
several subintervals).

oy <0, |low| < t(x) forx €L (2.2b)
(It is assumed that o,, > 0 in the text to follow, so that the sign || will be omitted.)
(3) Along the set L; of fixed open (traction free) intervals
0y =0,=0 forxel; (2.3a)
Note that the method developed in the present work actually covers a more general case when an arbitrary
distribution of equal and opposite tractions is applied on Lj:
Oy = T.(X), 0, =0.(x) for x € L; (2.3b)
Such a generalization allows for physically interesting situations, for example, the case of fluid pressure

applied along L;.
The condition of non-overlapping of crack faces should also be imposed:

u,| =20 forxels (2.4a)
Y

In a more general case, when a certain finite initial crack opening A(x) along L; is present, (2.4a) can be
relaxed to

4+ )] >0 (2.4b)

The points that separate the intervals of sliding L, from the locked intervals L, are determined from the
following condition for stress intensity factor (SIF):

KH =0 (25&)

Indeed, Ky # 0 at the end point of L, would have generated a singularity of shear stress o, in L,, thus
producing sliding there. Note that the condition (2.5a) is necessary, but not sufficient for the determination
of the endpoints of L, — the inequalities (2.2b) have to be verified.

If an endpoint of L; coincides with one of the crack tips x = +/ then condition (2.5a) should be replaced
by

Kn < Knc (2.5b)
where K¢ is a material constant representing the resistance to shear fracture.
In the present paper, the analysis is restricted to the case of the “monotonic’ propagation of sliding, in

the sense that the intervals where sliding has been started, continue to slide as the applied loads change.
Extension of the analysis to the cyclic loadings will be given in a follow-up manuscript.
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3. General solution in absence of open intervals

We first consider the case when there are no open (traction free) intervals Ly and the crack line comprises
interval(s) L, of frictional sliding, possibly alternating with locked intervals L, (Fig. 2). Note that ,, = o7,
on the entire crack length L; U L; (so that, if Coulomb’s law is assumed, then a,, = t(x) = —pu(x) o}5 + c(x)
along L).

Using the stress superposition (Fig. 2), we reduce the problem, at each stage of loading, to the linear
elastic one, with shear traction g, = o3y — 7(x) on L;. Note that, as follows from the analysis to follow,
0y, < 0 in the parts of L, that are adjacent to the endpoints of L, and, generally, 4,, > 0 in its central part
(unless sliding zone L; has developed as a result of coalescence of two sliding zones, in which case g,, may
be negative along the former ligament). As far as the locked intervals L, are concerned, the difference
oy — 7(x) is negative there (otherwise, sliding would have occurred within L,).

Following the usual formalism of two-dimensional elasticity, the solution is sought in terms of Kolosov—
Muskhelishvili’s potentials:

26 (u, +1iu,) = k®(z) — D) — (z - 2)P(2) (3.1a)

0y — 10y, = P(2) + P(2) + (z — 2)P'(2) (3.1b)
where G is the shear modulus, x = 3 — 4v for plane strain and x = (3 —v)/(1 +v) for plane stress (v is
Poisson’s ratio). Functions ®(z), as well as @(z) (of complex variable z = x + iy) defined by the relation
®(z) = ®(z), are piecewise analytic, with L; and L; being the discontinuity lines.
Assuming that, in the general case, the sliding zone L, comprises # sliding subintervals L(lk), with yet
unknown endpoints a;, b; (alternating with locked subintervals of L,), we have the following expression for
the complex potential @(z) (see, e.g. Muskhelishvili, 1953):

1 X(t)ou(t)dt . Pi(2)
M)_mmall —- ' (32)
where
Oy oy
+> O- Xy +’ O- Xy
Oy =0y _
onl=ryn b iy
Ly -
7 ) - +—% /
- Oyy =0 on L UL,
L,

—— —

Fig. 2. Stress superposition for a crack comprising sliding interval L, and locked interval L,.
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X(z):\/(z—al)(z—bl)-~-(z—an)(z—b,,) (3.3)

with the branch chosen in such a way that z7"X(z) — 1 as z — oo (hence X7 (¢f) = X(¢) and X~ (¢) = —X(¢)
on L;, where ¢ is the coordinate along x-axis) and P,(z) is a polynomial of degree < n:

P(z) =Co" + C 2" +---+ C, (3.4)

with real coefficients to be found from n conditions of uniqueness of displacements at points @; and b;:

jéwqa(z)dz:o k=1, .n) (3.5)

1

where Afk) are closed contours encircling LY‘).

We now determine the stress intensity factors entering the condition (2.5a):

~ Jlim._.. \/z=2zP(z), forz = b
Ku(zi) = { ilim, ., \/z—z®(z), for z; = ay (3.6)

or, after some algebra,

[e e}
— (x)
Xy T\X
v Y
1. Nucleation of new sliding zones
Xy are points of local minima of 7(x)
05 <min 7(x;) o5, 2min 7(xy)
k ’ k
p no new sliding new sliding
zone zone
1 |
A
v

2. Propagation of sliding zones

Given: endpoints ay , by,
Find: new endpoints ak*sbk* corresponding to increment of 0';3);
Criterion: K;; =0

Iteration process:

* *
a, ay slidingzone by bk

o O

Ky <0] [k =0][K >0) Ky >0][K =0] [k <0)

00
Increase O XV Pa——

Fig. 3. Iterative procedure of finding endpoints of the sliding zone(s).




7506 L. Gorbatikh et al. | International Journal of Solids and Structures 38 (2001) 75017524

K(z) = &) + hla) (3.7)

VB = @) Tl (e = @)z = )
In the expression above F(z;) = lim,_, F(z), where

=g [ Hp00

is Cauchy’s integral and the coefficients of P,(z) are determined from the following system of » linear al-
gebraic equations:

Gri+ 4G, 1 L[ X(©oy(9dE _
2/L<k> X (1) dt+ni /Lm X(t) /L1 E—t dt=0, k=1,..n (3.8)

where second integral has a non-integrable singularity along L(lk) when L = L(lk) and has to be understood in
the principal value sense.

We now outline the procedure of analysis of the sliding process (Fig. 3). Sliding starts at the point(s) x of
local minima of frictional resistance 7(x). As the applied shear load ¢ is increased, sliding zone(s)
propagate. The criterion for locating the new endpoints of the sliding zones is that the stress intensity
factors at the endpoints have to be equal to zero: Kj; = 0. In the case of only one sliding zone, this condition
yields two non-linear algebraic equations for the endpoints’ coordinates. In the case of N sliding zones, we
obtain a system of 2N coupled algebraic equations. This system is solved by iterations, with the solution for
non-interacting zones being the first approximation.

As far as the basic solution for one sliding zone is concerned, in the case of piecewise constant minimum
it can be constructed exactly (see Section 4.1); for more complex profiles of the frictional resistance, the
solution of Section 4.2 for the asymmetric minimum provides a good approximation.

1

4. Analysis of various factors affecting the propagation of sliding zones

We analyze the influence of the profile of frictional resistance t(x) on the initiation and propagation of
the sliding zones, as the applied shear traction (or driving force) is increased. (In the simplest case, when
7(x) = 19 = const, sliding occurs along the entire crack line when the applied shear load reaches the value of
the frictional resistance: a7) — 79 = 0.)

4.1. Piecewise constant profile of t(x) with a local minimum

We consider the case of piecewise constant distribution of 7(x) with one local minimum:

T, a<x<b
(x) =<1, b<x<l (4.1)
3, —Il<x<a

where 7; <1, < 73. This case models, for example, the situation when Coulomb’s law is assumed, with
friction coefficient u(x) being piecewise constant and cohesion coefficient ¢(x) being constant. In this case,
the problem of propagation of the sliding zone (in terms of applied loads) can be solved in closed form and
in elementary functions.

The entire crack is locked until the applied load reaches a critical level: o7; = 1, at the point(s) of the
lowest frictional resistance. At this point, sliding starts in the interval a < x < b and, as ¢2° is increased,
sliding spreads into the adjacent intervals (a — &3,a) and (b,b + &,). In the text to follow, we derive ex-
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pressions for ¢, and ¢; as functions of ¢27, from the condition that SIF Kj; = 0 at the ends of the sliding zone
(@ —&, b+ &).

The condition Ky = 0 translates into the following two equations:

b+ter +(1/2)
a—e 2 2 b+e—x
K T =— o _ dx=0 4.2
H{b+82} \/Tt(b+82—a+83) /ag3 G'(X){X—GJFSS} “.2)
where
0y (x) = o) — t(x). (4.3)
Substituting Eq. (4.3) into Eq. (4.2) and calculating the integrals one obtains
K {a_83} = b_a+82+83{m” {(r -1 )arcsina_bJrSz_"33
btaf 2n V 2 b—a+ée+eé
(ts — 71 arcsin 09278 (00 4+ 1)
— (T3 — 7T —_— T T
3= T b—atetes 2+ T3
+ 2 {(12 —t)Vb—a+e)e— (13— 11) (b—a+82)8;] (4.4)
nb—a+e+e) ’ ’

a

b

Equating K”{
two equations for & and &;:

_T_? } to zero yields two equations; adding and subtracting them leads to the following
2

o T+ -7 _os(l=0d) =1 13—1 _s(1+0)* =2 — 1
oy =5+ arcsin 5 — arcsin 5
2 T s(1+m) -1 n s(1+m)” -1 (4.5)

o3 = S0 +s5 — 1

where

2
s:(“_“) and o = (b — a)e;".

T2 — T

Numerical solution of Eq. (4.5) is illustrated in Fig. 4 (for the case when a = —0.2, 5 = 0.2, 7; = 0.57,
Ty = 79, T3 = 1.57¢). As sliding starts in the interval (a, ) of reduced frictional resistance t(x), it propagates
at both ends. However, the rates of propagation at the left and the right endpoints are different; they are
interrelated through parameter s.

An interesting observation is that Eq. (4.5) do not contain any reference to the length 2/ of the entire
crack, up to the point when the sliding zone reaches one of the tips —/, / of the crack. The load a7 at which
the sliding zone reaches the right tip of the crack is found from Eq. (4.5):

(o]

+ - Cos(l—o?) =1 - Cs(l+a)P =201
= 2 & + 2 O arcsin S( ) — & O arcsin S( )

a 4.6

Xy 2 T S(l +OC)2—1 T S(l +OC)2— 1 ( )
where oo = (b — a)/(I — b). At this point, condition Kj; = 0 at the right tip should be changed to Kj; < Kjic
and the propagation continues only on the left. At this stage, the equation for ¢&;, similar to Eq. (4.5), can be
derived:
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(a)

15] 7(x)/ 7

1
0.5
x/t
r 02 02 I

(b)
1.4 O-;;/TO

\ Sliding zone _—
\ /

0.6

x/t
-1 -0.5 0 0.5 1

Fig. 4. Propagation of the sliding zone in the case of piecewise constant frictional resistance, as o35 increases.

e Ty — T 2\/ —Cl+83 b)_arcsinl+a—2b—83
(l—a+€3)

e i l—a+¢g
73— 11 [ 2+/&(l —a) L l—a—¢& Ty + 13
— — arcsin — =0
b l—a+ & l—a+ & 2
At &3 = [ + a (the left tip —/ is reached), this formulae gives the corresponding load a7):
- ) b? — . 2
o§;+% <arcsml+ 1 —12> B - o (arcsmc;Jr 1 —6;2> —12;T3 =0

In the symmetric case 7, = 13, we have ¢; = & = ¢, with the following solution for the length &:
b—a( 1 oy, — 1)
= -1 h =-—2 =
=5 (g 1) w050
that recovers the result of Weertman (1964).

4.2. Piecewise linear profile of t(x) with a local minimum

We now consider the following profile of frictional resistance z(x) (Fig. 5a):
T a<x<b
xX) =< pr+gx b<x</{
ptrgx —(<x<a

(4.10)
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(a)
7(x)
Drt g D2t qrx
3 3 7
X
” R ‘
(b)
22 \O\-XV\/Tl
\v Sliding zone /
N
\
o x/l
-1 -0.5 02 0 0.2 0.5 1

Fig. 5. The case of asymmetric frictional resistance (with a local drop). Propagation of the sliding zone as ¢7; increases (p» = p3 = 0.9,
q; = —0.5 and ¢, = 0.75).

This case is of importance, since it may be used, as an approximation, for many other profiles of fric-
tional resistance containing a local minimum. Indeed, as shown in the text to follow (Section 4.3), after a
certain vicinity of the local minimum has slid, effect on the subsequent sliding may be modeled, with good
accuracy, by replacing it by an interval of piecewise constant, “flat” minimum, of the magnitude that
preserves the average of the drop over this vicinity. The problem considered here may be used as the basic
building block for an iteration process in the case of several interacting sliding zones and complex profiles
of the frictional resistance.

As ¢%° is increased, sliding spreads into the adjacent intervals (b,¢,), (&,a) and new endpoints of the
sliding zone (&3, &) can be found from the condition Ky = 0.

This condition translates into two non-linear algebraic equations for &, and &;:

T . —2a+é&+ e T . —2b+ e+ &
q;| = — arcsin —— = | + ¢ =+ arcsin—— = | =0
2 &) — &3 2 & — &3

F(aap37q370) _F(b7pzaQZa 1) =0

(4.11)

where
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— 26— g5 —
F ap7q7 é 6_93(0-Og ‘If‘F &>

4

2 2 2
B —& [ o (&3 — &) €5 — & . 28+ ete 6T
+< (Jy—p>—q e 43 —arcsmﬁ—l—(—l) E
(a”—rl)<\/93 ENE—& — — & arcsin _26—’_83—'—82)

&3 — &
4 (&5 — 82)2 1— 2 teatea)
9 4 &3 — &

These two equations can be solved, for example, by iterations. The solution (propagation of the sliding
zone) is illustrated in Fig. 5b.

4.3. Sensitivity of the sliding process to the profile of frictional resistance

The available information on frictional resistance t(x), as a function of a point on the crack (“frictional
resistance profile”) is, at best, approximate. It is important, therefore, to examine the sensitivity of the
sliding process to the “details™ of the profile.

The following observations, made on the basis of case studies performed in the framework of our
formulation, can be made.

(a)
Jr(x)/7g
\~.\ =y
S =
RN
0.5
x/¢
-1 -0.5 0.5 1
(b)
1 oo
O-xy/TO
K o, o ‘"«/
\\ \‘k " -~
N &7
N L4
08 NG Nk s
VY i
\ % Sliding zone [ /
0.6
x/(

-1 -0.5 0 0.5 1

Fig. 6. Sensitivity of the sliding process to the exact profile of frictional resistance in the case of local minimum of 7(x). Propagation of
sliding for three different profiles of 7(x).
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(a)
1.5 7(x)/7
= N
4“‘4_“ .,...\'...\
o RN
1
x/ Y4
| -1 —O.g 0‘5 1 |
(b)
1.4

O-xy/ ()
Sliding zone Sliding zone

12 / / /:..-‘" "‘-._“\\ \

¥ Al

-1 -0.5 0 0.5 1

1

Fig. 7. Sensitivity of the sliding process to the exact profile of frictional resistance in the case of local maximum of z(x). Propagation of
sliding for three different profiles of 7(x).

(A) As the applied shear loading increases, the rate of propagation of the sliding zone is initially sensitive
to the local details of the frictional resistance profile.

(B) However, the sensitivity to these details within the zone of local reduction of 7(x) that has already
been slid is quickly lost: the “memory” of the resistance profile in this zone is retained, with good accuracy,
only in terms of the average (over this zone) frictional resistance.

(C) In the case of “fluctuating” t(x), the propagation of sliding, at initial stages, is quite sensitive to the
amplitude of the fluctuations (provided the average (t) is kept constant). However, at the point when the
applied shear load o7 reaches the average (1), this sensitivity is lost.

Statement A can be illustrated on the following two examples, that involve a local minimum and a local
maximum of 7(x), respectively.

(1) Propagation of sliding from an interval of local minimum of frictional resistance: Propagation of sliding
from the points of minimal frictional resistance, as a function of the shape of the minimum, is studied on
three examples that model a drop of frictional resistance within a certain interval by three different shapes
of 7(x): a triangle, a parabola and a step function (Fig. 6a). It is seen, from Fig. 6b, that the propagation
rates have a substantial sensitivity to the shape: the propagation is noticeably slower for the triangular
shape. An interesting observation is that the curves of Fig. 6a and b are similar (triangular/parabolic shapes
of Fig. 6a correspond to the same shapes of Fig. 6b).
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(2) Propagation of sliding in the vicinity of a local maximum of frictional resistance: We consider the case
when the frictional resistance is increased (as compared to the constant background level t7y) within a
certain interval (—//2,1/2). This local maximum is modeled by three different shapes of 7(x): a triangle, a
parabola and a step function. It is seen, from Fig. 7, that the propagation of sliding towards the point of
maximal 7(x) is noticeably faster for the triangular shape.

1 7(x)/7

7(x)/7y

L | } x/ fl X, / 4
r T
-1 -0.5 0.5 1 -1 -0.5 0.5 1
(b)
0.9 1=} oo
O-xy/ ) O-XJ’/ %
D 0.9 ™ ~
\
W Sliding zone // A\ Sliding zone 7
\ I \ /t
07 \ 1 L —_ /%4
0.7
average
average__ actual
actual /
05 x/t 05 x/t
.5 .5 1 -1 05 0 0.5 1

m]

-0.

Fig. 8. Sensitivity of the sliding process to the replacement of the exact profile of local minimum of frictional resistance by its average
(= — -). The sensitivity is quickly lost as the sliding zone extends beyond the interval of local minimum.

(b)
0 Sliding zones o / Sliding zones
Gl Sl |
1.3 LY ¥ 1.2 i f
p \\\ VAN 3 VI
12 ! A Y i "'/7 i '\\
A average| | actual | | average I/ actual \\
1 \ / \
1 \ 1.1 T \
| | 1] \
1.1 i \l ] \
I
| ___y ) x/¢ . - x/¢
-1 -0.5 0 0.5 1 -1 -0.5 0 .5 1

Fig. 9. Sensitivity of the sliding process to the replacement of the exact profile of local maximum of frictional resistance by its average

.
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Statement B can be illustrated as follows.

(1) In the case of local reduction of frictional resistance t(x) within a certain interval, we replace the
actual profile of 7(x) in this interval by its average over this interval. It is seen, from Fig. 8, that, after the
interval has been slid, the curves that show the propagation of sliding for two shapes of t(x) — circular and
triangular — quickly merge with the ones corresponding to replacement of 7(x) by its average (t).

(2) We consider now the case of elevated level of frictional resistance t(x) within a certain interval and
examine the critical applied shear load o7y at which the point of maximal t(x) is crossed and two sliding
zones coalesce. Analysis of the two shapes of a local maximum, shown in Fig. 9, indicates that, in the case
of a “mild” maximum (circular shape), the replacement of z(x) by (1) leads to only 2% reduction of the load
at which the coalescence occurs; a somewhat “sharper” peak (triangular shape) leads to a larger reduction,
of 4%. In this sense, the sensitivity to replacement of t(x) by () is relatively weak (although it may increase
for very sharp peaks of 7(x)).

Statement C is illustrated in Fig. 10 on the example of the cosine profile of 7(x) with the average
(1) = (1/2) 1. It is seen that, for larger amplitudes of (x) (and, thus, for “deeper”” minimums), the sliding
process initiates at lower 5. However, as ¢7° reaches the level of (), all the curves of Fig. 9b intersect, i.e.
the zones of sliding coincide. As oy is raised above (r), the differences between the sliding zones corre-
sponding to different amplitudes remain minimal. The differences in critical levels of 627 at which the sliding

zones coalesce are also small to moderate, for the range of amplitudes shown in Fig. 10a (although they will
obviously increase, as the amplitude of 7(x) increases).

()
x)/7
X
27
(b
ny 7y /\ Sliding zones /“\
0.6 / \
\\\ / / \\\ / //
N~/ N\
0.2
e A -

-2r - 0 V4 2z

Fig. 10. Spatially fluctuating frictional resistance (modeled by a cosine curve). Propagation of sliding as a function of the amplitude.
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Fig. 11. Propagation of sliding after the sliding zone reaches one of the crack tips. (Dotted line indicates, for comparison, the case when
the crack extends beyond the point x = / and there is no effect of the crack tip.)

4.4. Propagation of sliding after the sliding zone has reached one of the crack tips

Until the sliding zone reaches one of the crack tips, the latter do not affect the sliding process, i.e. the
process is the same as in the case of an infinite crack. (This is seen from the formulation of the problem,
where the crack tips manifest themselves, in the form of inequality Kj; < Kjic, only when the sliding zone
reaches one of them.)

As soon as one of the crack tips is reached, the propagation of sliding at the other end of the sliding zone
slows down. This is illustrated in Fig. 11, on the example when 7(x) has a local minimum that is adjacent to
the right tip of the crack. The solid line (the solution of the problem) is contrasted with the dashed line that
corresponds to the case when 7 = 7 on the right of x = / (i.e. the crack expands beyond the point x = / and
there is no effect of the crack tip).

4.5. The effect of interaction between the sliding zones

The interaction between the sliding zones enhances the propagation of sliding. This is illustrated on two
examples, each involving two sliding zones (initiating from two intervals of reduced 7).

The first example (Fig. 12) compares the process of sliding with two zones to the one involving only one
sliding zone (dotted line). The enhancing effect of interaction is generally weak (the solid and the dotted
lines are close), except for the last stage of propagation when the remaining ligament is small (this is related
to the general weakness of crack interactions in the collinear arrangements). The enhancing effect of in-
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Fig. 12. Enhancing effect of interaction between two sliding zones of equal lengths. (Dotted lines indicate, for comparison, the solution
for one sliding zone.)

teraction becomes noticeable at small spacings between the sliding zones; as a result, the magnitude of the
applied stress ¢} at which the two zones coalesce (at the midpoint M), is 6% lower than the stress at which
point M is reached by a single sliding zone, without the enhancing effect of the other zone.

The second example (Fig. 13) examines the effect of interaction as a function of the difference in sizes of
the two sliding zones: the solid lines correspond to the ratio of the sizes 4:1 and the dotted lines to the ratio
1:1. (To make the effect of the size difference more explicit, we eliminated the influence of the crack tips, by
assuming that the crack is sufficiently large.) As expected, the enhancing effect of a larger zone on a smaller
one is stronger than vice versa.

5. Several collinear cracks undergoing frictional sliding

The analysis of sliding zones (their nucleation and propagation) on several collinear cracks is similar to
the one for one crack, until one (or several) of the endpoints of the sliding intervals reaches one of the crack
tips. After that, the fact that the line along which sliding takes place, incorporates several separate cracks,
starts to affect the sliding process. Mathematically, this is due to the replacement of the condition Kj; = 0 at
the endpoint(s) of the sliding zone(s) by the condition Kj; < Kjc.

The effect of the line of sliding being broken into several separate cracks is illustrated on the example of
two cracks, the left one having low and constant value of 7 and the right one having the profile of z(x)
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Fig. 13. Enhancing effect of interaction between two sliding zones of different lengths (ratio of lengths 4:1). Dotted line indicates, for
comparison, the case of equal lengths.

shown in Fig. 14a. Frictional sliding initiates on the left crack (along its entire length). As the applied load
o is increased, sliding starts on certain intervals of the right crack. Sliding on the right crack is enhanced
by the fact that the left crack has already slid. In Fig. 14b, the solid line (the solution of the problem) is

contrasted with the dashed line that corresponds to the case when the left crack is absent. The enhancing
effect of the left crack on sliding on the right crack is seen to be quite strong.

6. General solution in presence of open intervals

We now assume that, in addition to sliding intervals L, where Coulomb’s law (x) = —u(x) g,, + c(x)
holds, “open intervals” (collectively denoted by L3) are present. By open intervals we mean the intervals (of
given, fixed length) where tractions are equal to zero. They model situations where a part of a material has
been lost (fell off) along a certain part of the crack. We emphasize that such traction free intervals are not
caused by any system of “prying loads”, but are fixed. In this respect, the problem is different from the one
analyzed earlier by Comninou and Dundurs (1979, 1981) and Mendelsohn and Whang (1988).
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Fig. 14. Two cracks undergoing frictional sliding. Left and right cracks have uniform and piecewise constant frictional resistance,

correspondingly (as indicated). Enhancing effect of the left crack on sliding on the right crack (dotted lines indicate, for comparison,
the case when the left crack is absent).

Using the stress superposition of Fig. 15, we reduce the problem to two subproblems, as follows.
Subproblem A involves mode I loading only, and traction ¢* along interval L; is given by the solution of
the problem of an open interval under remote compression ¢°> (and hence may have a singularity if the
open interval has sharp tips). Subproblem B involves mode II only and it can be further decomposed into

two subproblems: Bl and B2. Problem B2 can be solved by the method developed in Section 3, whereas the
stress state in problem B1 is uniform shear ¢3°.

Subproblem A is formulated as follows:

0, (x) =0, a,(x)=0, for x € Lz
w 0 (6.1)
Oy =7 0y,,5  Oxx; Oxy =7 at z — o

We note, in connection with the superposition, that the following condition holds along the line Z; in this
subproblem (with the account of ,, =0 on L;):

0w (x) + p(x) 0, (x) = u(x) 6;()6)7 [u,] =0, o] = [0,] =0, forx € L, (6.2)

where aﬁ,(x) is the stress generated along the line Z; in this subproblem.
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Fig. 15. Stress superposition in presence of open interval L;.

Similarly, the subproblem B is formulated as follows:

6i(x)=0, o5(x)=0  forx¢€ Ls

Xy »

+ A +
0, (x) = —u(x) o, (x) +c(x), 0,(x)=0 for x € L, (6.3)
O-X,V_) Ji)on Uxxagyy_>0 at z — o0

with the following relation on L;:
T (X) + 1(x) 0y (x) = —p(x) o (x) + ¢(x),  [,] =0, [o5] =[0,] =0 (6.4)

Adding up the right hand parts of Egs. (6.2) and (6.4) recovers the original problem. Thus, the original
problem is reduced to two Dirichlet’s problems, on L3 and on L; U L,.

Remark 1. We note that the normal traction distribution ¢* depends on whether the endpoint of the open
intervals is “sharp” or “blunted”. We assume, in the analysis to follow, that the mentioned endpoints are
sharp, so that ¢* involves a singularity generated at the tip of the open interval by the compressive loading
(otherwise, ¢* has to be readjusted, in accordance with solutions for stress fields near slender notches).

Remark 2. Since o* enters the analysis only via product u(x) ¢, the singularity at the endpoints of the open
interval can, formally, be attributed to u(x) — these two physically different problems are mathematically
identical. Thus, the problem with an open intervals can be reduced to the one considered in the preceding
Sections, with singular p(x).

Remark 3. A more general problem can be analyzed by similar means: instead of open intervals of zero
traction, certain prescribed distributions o, (x) and 7. (x) of normal and shear tractions can be prescribed on
L;. Such a formulation may cover physically interesting situations, for example, the case of fluid pressure
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applied along L;. In this more general formulation, tractions o.(x) and 7.(x) will enter the analysis in a
straightforward way: o} (x) = 0.(x) for x € Ls in formula (6.1) and o7, (x) = 7.(x) for x € L; in formula
(6.3). ’

We now consider several examples that illustrate the effect of open intervals.

7. Analysis of sliding process in presence of open intervals

We show that open intervals, generally, hinder the sliding process, except for the case (Example A) when
the friction coefficient u = const outside of the open interval (in which case the open interval has no effect
on sliding). In order to reduce the number of parameters, we set cohesion coefficient ¢ = 0 in Examples
A-C, although the developed method, generally, accounts for the cohesion coefficient ¢ = ¢(x).

Example A. Frictional coefficient 4 = , outside of the open interval (—a, a). Sliding starts at points x where
condition (2.1a) is satisfied; in this particular example this condition is as follows:

Oy (X) + 110y (x) = 0 (7.1)

where ¢, and o, are stresses on L; (in presence of the open interval). We assume that the endpoints of the
open interval are sharp, so that ¢,, and o, involve a singularity generated at the tips of the open interval:
x| g ¥l
Oy = 7\/)@, Oy = T (7.2)
Substituting Eq. (7.2) into Eq. (7.1) leads to cancellation of singular multipliers at the normal and shear
terms, so that the condition of nucleation of sliding is re-stated simply as a7 + py0;, = 0. Its satisfaction
occurs at all points x simultaneously and sliding takes place along the entire crack. Note, that this con-
clusion also applies to the case when the open interval is located asymmetrically with respect to the crack
center, including the limiting case when it is adjacent to one of the crack tips.
Since the condition of sliding in this case coincides with the one in absence of the open interval, the
presence of an open interval produces no effect on the initiation of sliding. This physically interesting
observation holds also in a more general case of several open intervals.

Example B. The friction coefficient is piecewise constant outside of the open interval (Fig. 16a).

Applying the same condition (7.1) yields that sliding starts at 67 = y,0}; along the entire length of the
intervals a < |x| < b. Further increase of a7 leads to a gradual propagation of sliding into intervals |x| > b
of higher u. As follows from the superposition of Fig. 15, this problem reduces to the one with one sliding
zone (—h, h), with the following traction distribution (Fig. 17):

o, x| < a 73
Tvy = - |, .
T B, K> a (73)

Endpoints 4 of the sliding zone are found from the condition Kj;(+4) = 0 that yields:

o 2 b - a2
G—;; == (#y — ) arctan 7B (7.4)

For comparison, consider the case when the open interval is absent (and is replaced by the sliding interval
of i = u,). Then, Eq. (7.4) is to be replaced by
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2 . b
=Hh T (1 — ) arcsin 7 (7.5)

Comparison of the two results (Fig. 16b) shows that the presence of an open interval in the midst of the
sliding zone hinders the propagation of sliding. Physically, this effect may be explained by the fact that, in
the considered case, the presence of an open interval generates singular compressive stresses at its tips
(whereas shear stresses remain non-singular there).

Example C. We examine the effect of the crack tip, by modifying Example B: the open interval is adjacent to
the crack tip x = —a. A similar analysis, based on the condition Ky (%) = 0, yields to following equation for
the right endpoint / of the sliding zone as a function of applied loads:

6% 0 2 — _l+a-2b b—
To _ et ol 20, = ) (b—a)(é—b)+aarcsm+/T—(f—a)arctan —“] (7.6)

g a+? n(a + ) L—b

Comparison with Example B shows, that having a crack tip as one of endpoints of the open interval
hinders, to some extent, the propagation of sliding.
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Fig. 17. Shear traction distribution in the problem with an open interval.

8. Displacement discontinuity profile along the crack line

We now analyze the distribution of displacement discontinuity (the accumulated slip displacement)
along the sliding contact. This problem is relevant for geomechanical applications where, for example, the
fault slip distribution may be of interest (Schultz, 1999).

The displacement discontinuity along the crack faces can be found from Eq. (3.1a):

[ — ] (8) = Kz-f’;tl </‘ le(x) /L X(t)tcf_xy)gt)dtdxJrz/m5 1;(((;3 dx) (8.1)

where u is Lame’s constant and where xk = 3 — 4v for plane strain, x = (3 — v)/(1 4 v) for generalized plane
stress and L, may, generally, comprise several sliding intervals: L = U(ay, b;). Expressions for X(x) and
P,(x) are given by Eqgs. (3.3) and (3.4), respectively, and “‘driving force” o,,(x) is as follows:

0y(x) = 07, —t(x), x€L; inabsence of open intervals (8.2)
a°, x€Ll; . .

On(x) =< ¥  in presence of open intervals 8.3

(%) {a;;—i—u(x)ag—c(x), xer, MP P (8.3)
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Fig. 18. Slip distribution at increasing o7;. The case of piecewise constant frictional resistance (£’ equals to Young’s modulus £ in plane
strain and to £/(1 —?) in plane stress).

We now consider two representative examples.

(1) Piecewise constant frictional resistance in absence of the open intervals (Fig. 18a): Fig. 18b illustrates
the slip distribution (corresponding to the same numerical parameters as in the example of Section 4.2), at
different levels of applied o,,- An interesting observation is that the peak in the displacement discontinuity
moves to the right, as ¢7; increases; this is due to asymmetry of the profile of frictional resistance. Thus, the
mentioned peak moves away from the point where the sliding started. This result may be relevant to some
observations on slip distribution along geological faults (Schultz, 1999).

We also note that there are two inflection points in the slip profiles. They are caused by discontinuities of
the frictional resistance and move in the process of sliding propagation, as seen from Fig. 18b. After the
sliding zone reaches one of the crack tips, the effect of the latter on the slip distribution becomes quite
significant, as seen from the same figure.

(2) An open interval is present with piecewise constant frictional resistance outside of it (Fig. 19a): Fig. 19b
illustrates the corresponding slip distribution considered at different levels of applied shear load ¢7;. In this
case, sliding is preceded by a “deadband” — an interval of loads where no sliding occurs (although the
tangential displacement discontinuity, of the elliptical shape, does occur along the open interval). Inter-
esting observations are that the shape of the discontinuity within the open interval remains elliptical, and
that the profile has inflection points at the points of discontinuity of u(x).



L. Gorbatikh et al. | International Journal of Solids and Structures 38 (2001) 7501-7524 7523

(a)
ﬂ(x)/ Ho
2
I 1 —
x/f
‘—1 —0‘.4 -0.2 0.2 O‘.4 1‘
(b)
" fu) o iy 17
4z, (¢
0.4 G
02 N\
0.5
0 / \ \x/f
1 05 0 0.5 1
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9. Discussion and conclusions

The problem of frictional sliding on one or several collinear cracks, with non-uniform frictional resis-
tance 7(x) along the crack faces is analyzed. The frictional resistance may be specified by Coulomb’s law:
7(x) = —p(x)o,, + c(x), but this is not a necessary restriction for our analysis.

Three different regimes may take place along the crack: frictional sliding, locked state and open, traction
free intervals that may model the situations when a part of the material fell off from the crack zone (note
that the condition of zero tractions on the open interval can actually be generalized to the condition of
prescribed tractions there). As the applied remote shear loading is increased, sliding starts at the point(s) of
the lowest frictional resistance and then propagates; in the case of several sliding intervals, the latter interact
with each other, producing a mutually enhancing effect. Similar enhancing effect is produced by the in-
teraction of slidings on several collinear cracks.

The sensitivity of the sliding process to the exact profile of frictional resistance t(x) (or, to the distri-
bution u(x) of the frictional coefficient if Coulomb’s law is assumed) is examined. Such an analysis is of
importance because the frictional characteristics can usually be estimated in a very approximate way. The
basic findings can be summarized as follows. In the case of a local minimum of t(x) within a certain in-
terval, the propagation of sliding is, initially, quite sensitive to the “details” of the profile of 7(x). However,
after the interval of reduced 7(x) has been slid and “left behind”, further propagation of sliding loses
sensitivity to the “details”: it is almost unaffected by the replacement of 7(x) in the mentioned interval by its
average (over this interval) value ().
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Until the sliding zone has reached one of the crack tips, the latter do not affect the sliding process (i.e. the
process does not depend on the crack length). After one of the tips has been reached, further propagation of
sliding (at the other end of the sliding zone) is slowed down, although this effect is relatively mild.

An interesting finding is that the presence of open intervals (that simulate the situations when part of the
material fell off) hinders the propagation of sliding. This may be explained by the fact that such intervals
may generate singularities of compressive stress at their endpoints (whereas the shear stress remains non-
singular there, due to the condition Kj; = 0).

The slip distribution over the non-uniformly sliding crack is examined on two representative examples
(with and without an open interval). An interesting finding is that, as sliding progresses, the point of the
maximal slip may move away from the point where the sliding started. This finding may be relevant to
certain observations on slip distribution along geological faults.
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